An Automatic STOP and GO Circuit for DC Operation

From modeltrainsounds.com

Robert Wilkins (July 2020)

With this small inexpensive circuit board you can set up a small single track oval or circle layout that runs automatically with an adjustable stop time. This setup is most commonly used to simulate a station stop. After a pause the train continues to repeat the process.

The components needed to complete this project, in addition to the track and a 12 Volt train controller transformer include the following:

1. The Automatic STOP and GO Relay Circuit Board
2. A Reed Switch that is activated by a magnet.
3. A Neodymium Magnet that is attached to the train.
4. Connection wires for the track, module and reed switch.
5. A piece of track that is modified to accommodate the circuit. (Stop Track)

The Automatic STOP GO Circuit Board components include
1. Connection plugs to a DC 9 power source and to the Reed Switch at one end and to Stop Track at the other end.
2. A Relay Switch to turn power on and off to the stop track.
3. A Timer Chip for the stop time delay
4. A Potentiometer to set the stop time
5. A green LED. Turns ON during delay time.

The STOP & GO board is connected to a 9 Volt DC input such as a 9 Volt Battery Power Pack or 9 Volt DC Power plug-in unit with an optional slide switch.

1. The variable DC output from the train controller is attached to the track and controls the train speed. Set the Positive wire to the track on the right side when the train is moving forward.
2. The Reed Switch is set in the track just before the stopping point. This switch is activated by the neodymium magnet that is placed on the undercarriage of the locomotive. Usually it is
attached to a screw or other metal part under the locomotive. The reed switch activates the relay which turns power off to the isolated section of the Stop Track. The wires from the switch attach to the trigger IN location on the board and to the GND plug on the board as shown.

3. The relay is connected to the stop track, NC (Normally Closed) port, and to the track beyond the stop track COM (common) port. No connection is made to the NO (normally Open) port.

Once the locomotive's electrical pickup crosses into this section of track the locomotive will stop. The Timer chip, activated by the Reed Switch will delay for a period of time that is set by the adjustable potentiometer. Turning the Pot clockwise increases the stopping time. When the stop time expires the relay is turned off re-powering the Stop track and the train resumes forward motion. This system can be setup typically at a Train Station to simulate a train stopping for passengers.

In setting up this circuit you need to consider the following.

**Where to locate the activating Reed Switch**
Generally this is set just before the train crosses into the isolation track. In HO scale this is around 12-24 inches from the first gap in the Stop Track.

The two ends of the Reed switch are soldered to the connection wires. The wires are fed through the track between the ties so that the body of the switch can be laid parallel to the track rails. The wires run under the rails and are connected to the terminals on the circuit board as indicated.

**Where to locate the isolation Stop Track**
This should be setup so that when the train stops most or all of the passenger cars can access the station's platform. This point will generally put the isolated part of the track at the far end of the station or just beyond.

**How to build the Stop Track**
As the diagram below indicates 2 break gaps are needed in the track. The gap between these breaks will depend on the length of the locomotive's electric pickup wheels on that side of the track. Select a piece of track. Use 2 track plastic insulators or cut the gaps using a fine hacksaw or Dremel type cutting disc to isolate the track. The cut should be just wide enough to break the electrical contact.

<table>
<thead>
<tr>
<th>A cutting disc is used to cut the Gaps</th>
<th>Gap width</th>
</tr>
</thead>
</table>

---
Feeder wires are soldered on either side of the furthest track gap and connected to the circuit board.
An interconnecting wire is prepared by soldering the wires directly to the track beyond both gaps or solder the wire ends to two rail joiners. The joiners are attached to the ends of the track that contains the gaps. The Stop track is now installed on the layout.

| Solder wire to rail joiners at the ends | Connect and hide the wire connecting both joiners |

Connect the wires from the 9 Volt power source. The positive wire is attached to the VCC terminal, the negative wire is attached to the GND port. A switch on the battery pack is used to turn power on and off. If a plug-in power unit is used a switch can be inserted on one of the wires to turn power on and off.

The unit is now ready for testing. When power is applied nothing will happen until a locomotive with the magnet attached passes over the reed switch. The red LED on the board will light and an audible click will sound. The locomotive will stop on the Stop track and wait for the timer chip to count down. You can adjust the time delay by turning the potentiometer dial using a small flat blade screwdriver. Turn clockwise to increase the delay and counterclockwise to shorten. Once the delay has elapsed the red LED turns off, the track is switched on and the train proceeds forward.

A kit containing the necessary components required to complete this project is available at the website modeltrainsounds.com (Project 17)
The kit components include
- 1x Stop & GO Circuit Board.
- 1x Reed switch + 1 Slide switch
- 1x Neodymium magnet
- A 9 Volt Battery Pack
- Instructions for installation

Soldering is required for wiring